Analisis Sentimen Warganet Terhadap Keberadaan Juru Parkir Liar Menggunakan Metode Naive Bayes Classifier

 Avis Tantra Mukti (Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia)
 (*)Firman Noor Hasan Mail (Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia)

(*) Corresponding Author

Submitted: November 9, 2023; Published: February 2, 2024

Abstract

The still high rate of poverty in Indonesia causes many impacts, one of which is the emergence of illegal parking attendants. This condition continues to be supported by the creation of a parking area for business actors for their visitors. The parking areas provided are often free, and even have signs saying so. However, there are individuals who use the free parking space to earn income. There are many netizens' sentiments regarding the phenomenon of lying parking attendants on social media. Therefore, in this research, an analysis was used in the form of netizen sentiment towards illegal parking attendants on social media X using Naïve Bayes. The main objective of this research is to understand the public's feelings towards the existence of illegal parking attendants operating in the parking area. The dataset used in this analysis was 905 taken from social media The results of this research netizens felt very annoyed, angry and disturbed by the presence of illegal parking attendants operating. This is proven by the results of negative sentiment which dominates 93% of the total data or as many as 841 negative sentiments regarding this phenomenon.

Keywords


Sentiment Analysis; Illegal Parking Officer; Social Media X; Tweets; Naïve Bayes Classifier

Full Text:

PDF


Article Metrics

Abstract view : 687 times
PDF - 329 times

References

T. Tranggono et al., “Peran Media Sosial Sebagai Wadah Aspirasi Masyarakat,” Bureaucracy Journal : Indonesia Journal of Law and Social-Political Governance, vol. 3, no. 2, pp. 2155–2164, Jun. 2023, doi: 10.53363/BUREAU.V3I2.314.

Y. W. S. Putra et al., Pengantar Aplikasi Mobile. CV. Haura Utama, 2023.

Y. Uky et al., Memahami Teknologi Informasi: Prinsip, Pengembangan, dan Penerapan. Kaizen Media Publishing, 2023.

Alfandi Safira and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier,” ZONAsi: Jurnal Sistem Informasi, vol. 5, no. 1, pp. 59–70, Jan. 2023, doi: 10.31849/zn.v5i1.12856.

Peraturan Presiden Republik Indonesia Nomor 112 Tahun 2007. Indonesia.

R. J. Oszaer et al., “Penegakan Hukum Terhadap Juru Parkir Tidak Resmi Di Kota Ambon,” CAPITAN: Constitutional Law & Administrative Law Review, vol. 1, no. 1, pp. 46–63, Jul. 2023, doi: 10.47268/CAPITAN.V1I1.9907.

S. E. Rahayu, H. Rita, and H. Febriaty, “Potensi Retribusi Parkir Terhadap Pendapatan Asli Daerah Kota Medan, Sebelum dan Sesudah Penerapan E-Parkir,” Owner : Riset dan Jurnal Akuntansi, vol. 7, no. 4, pp. 3702–3711, Oct. 2023, doi: 10.33395/OWNER.V7I4.1936.

D. Noviantoro and A. F. Rosando, “Peran Dinas Perhubungan Dalam Menertibkan Oknum Jasa Parkir Liar Di Kota Surabaya,” Bureaucracy Journal : Indonesia Journal of Law and Social-Political Governance, vol. 3, no. 2, pp. 1581–1591, Jan. 2023, doi: 10.53363/BUREAU.V3I2.266.

Kitab Undang-Undang Hukum Acara Pidana. Indonesia: Mahkamah Agung, 2021, p. 85.

Badan Pusat Statistik, “Februari 2023: Tingkat Pengangguran Terbuka (TPT) sebesar 5,45 Persen dan Rata-Rata Upah Buruh Sebesar 2,94 Juta Rupiah per Bulan.” Accessed: Oct. 23, 2023. [Online]. Available: https://www.bps.go.id/pressrelease/2023/05/05/2001/februari-2023--tingkat-pengangguran-terbuka--tpt--sebesar-5-45-persen-dan-rata-rata-upah-buruh-sebesar-2-94-juta-rupiah-per-bulan.html

A. Hendri Doni, F. Alfiona, W. Andespa, E. dan Bisnis Islam, and U. M. Islam Negeri Sjech Djamil Djambek Bukittinggi, “Pengangguran Dalam Perspektif Ekonomi Islam Dan Kovensional,” Jurnal Ilmiah Ekonomi, Manajemen dan Syariah (JIEMAS), vol. 2, no. 1, pp. 1–10, Dec. 2022, doi: 10.55883/JIEMAS.V2I1.20.

R. Naquitasia, D. H. Fudholi, and L. Iswari, “Analisis Sentimen Berbasis Aspek pada Wisata Halal dengan Metode Deep Learning,” Jurnal Teknoinfo, vol. 16, no. 2, pp. 156–164, Jul. 2022, doi: 10.33365/JTI.V16I2.1516.

C. F. Hasri and D. Alita, “Penerapan Metode Naïve Bayes Classifier Dan Support Vector Machine Pada Analisis Sentimen Terhadap Dampak Virus Corona Di Twitter,” Jurnal Informatika dan Rekayasa Perangkat Lunak (JATIKA), vol. 3, no. 2, pp. 145–160, Oct. 2022, doi: 10.33365/JATIKA.V3I2.2026.

E. Febriyani and H. Februariyanti, “Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Algoritma Naive Bayes Classifier Di Twitter,” Jurnal Tekno Kompak, vol. 17, no. 1, pp. 25–38, Feb. 2023, doi: 10.33365/JTK.V17I1.2061.

T. A. Sari, E. Sinduningrum, and F. N. Hasan, “Analisis Sentimen Ulasan Pelanggan Pada Aplikasi Fore Coffee Menggunakan Metode Naïve Bayes,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 3, no. 6, pp. 773–779, Jun. 2023, doi: 10.30865/KLIK.V3I6.884.

N. Q. Rizkina and F. N. Hasan, “Analisis Sentimen Komentar Netizen Terhadap Pembubaran Konser NCT 127 Menggunakan Metode Naive Bayes,” Journal of Information System Research (JOSH), vol. 4, no. 4, pp. 1136–1144, Jul. 2023, doi: 10.47065/JOSH.V4I4.3803.

Y. Akbar and T. Sugiharto, “Analisis Sentimen Pengguna Twitter di Indonesia Terhadap ChatGPT Menggunakan Algoritma C4.5 dan Naïve Bayes,” Jurnal Sains dan Teknologi, pp. 115–122, 2023, doi: 10.55338/saintek.v4i3.1368.

S. Dwi et al., “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” Jurnal KomtekInfo, vol. 10, no. 1, pp. 1–7, Jan. 2023, doi: 10.35134/KOMTEKINFO.V10I1.330.

A. Saputra and F. N. Hasan, “Analisis SentimenTerhadap Aplikasi Coffe Meets Bagel Dengan Algoritma Naive Bayes Classifier,” SIBATIK JOURNAL: Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, Dan Pendidikan, vol. 2, no. 2, pp. 465–474, Jan. 2023, doi: 10.54443/SIBATIK.V2I2.579.

T. Ridwansyah, “Implementasi Text Mining Terhadap Analisis Sentimen Masyarakat Dunia Di Twitter Terhadap Kota Medan Menggunakan K-Fold Cross Validation Dan Naïve Bayes Classifier,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 2, no. 5, pp. 178–185, Apr. 2022, doi: 10.30865/KLIK.V2I5.362.

M. Hudha, E. Supriyati, and T. Listyorini, “Analisis Sentimen Pengguna Youtube Terhadap Tayangan #MATANAJWAMENANTITERAWAN Dengan Metode Naive Bayes Classifier,” JIKO (Jurnal Informatika dan Komputer), vol. 5, no. 1, pp. 1–6, Apr. 2022, doi: 10.33387/JIKO.V5I1.3376.

A. C. Khotimah and E. Utami, “Perbandingan Algoritma Naïve Bayes Classifier, K-Nearest Neighbor Dan Support Vector Machine Dalam Klasifikasi Karakter Individu Pada Akun Twitter,” Jurnal Teknik Informatika (Jutif), vol. 3, no. 3, pp. 673–680, 2022, doi: 10.20884/1.jutif.2022.3.3.254.

A. R. Abdillah and F. N. Hasan, “Analisis Sentimen Terhadap Kandidat Calon Presiden Berdasarkan Tweets Di Sosial Media Menggunakan Naive Bayes Classifier,” SMATIKA JURNAL : STIKI Informatika Jurnal, vol. 13, no. 01, pp. 117–130, Jul. 2023, doi: 10.32664/SMATIKA.V13I01.750.

A. R. Isnain, H. Sulistiani, B. M. Hurohman, A. Nurkholis, and Styawati, “Analisis Perbandingan Algoritma LSTM dan Naive Bayes untuk Analisis Sentimen,” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 8, no. 2, pp. 299–303, Aug. 2022, doi: 10.26418/JP.V8I2.54704.

A. Wibowo, F. Noor Hasan, L. Akbar Ramadhan, R. Nurhayati, and dan Arief Wibowo, “Analisis Sentimen Opini Masyarakat Terhadap Keefektifan Pembelajaran Daring Selama Pandemi COVID-19 Menggunakan Naïve Bayes Classifier,” Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa dan Inovasi, vol. 4, pp. 239–248, Jul. 2022, doi: 10.35814/ASIIMETRIK.V4I1.3577.

D. R. Berliana and B. Santoso, “Elektabilitas Ridwan Kamil Dan Anies Baswedan Dalam Simulasi Pilpres 2024 Di Twitter (Analisis Jaringan Media Sosial Dan Analisis Sentimen Pengguna Twitter Terhadap #RIDWANKAMIL Dan #ANIESBASWEDAN),” Mediakom : Jurnal Ilmu Komunikasi, vol. 6, no. 2, pp. 150–162, Jan. 2023, doi: 10.35760/MKM.2022.V6I2.6962.

“Indonesian Stoplist.” Accessed: May 23, 2023. [Online]. Available: https://www.kaggle.com/datasets/oswinrh/indonesian-stoplist/data

L. A. Rahman Malik, M. Kamayani, and F. N. Hasan, “Faktor-Faktor Yang Mempengaruhi Minat Calon Mahasiswa Baru Mendaftar Pada FTII Uhamka Menggunakan Algoritma K-Nearest Neighbor (K-NN),” Infotech: Journal of Technology Information, vol. 9, no. 1, pp. 85–94, Jun. 2023, doi: 10.37365/jti.v9i1.163.

B. Gunawan, H. Sasty, P. #2, E. Esyudha, and P. #3, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 4, no. 2, pp. 113–118, Dec. 2018, doi: 10.26418/JP.V4I2.27526.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Warganet Terhadap Keberadaan Juru Parkir Liar Menggunakan Metode Naive Bayes Classifier

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.