Analisis Perbandingan Algoritma SVM, Naïve Bayes, dan Perceptron untuk Analisis Sentimen Ulasan Produk Tokopedia

Muhammad Aulia, Arief Hermawan

Abstract


The rapid growth of the online market in Indonesia has changed the business landscape. Tokopedia, one of the leading E-commerce platforms, serves millions of users with a variety of products. In the fierce E-commerce competition, understanding customer reviews is very important. However, performing review analysis manually is a complex and time-consuming task. Sentiment analysis is needed to understand customer preferences, improve service quality, and maintain Tokopedia's competitiveness in the competitive E-commerce market. This study carried out a comparison between three algorithms, Support Vector Machine, Perceptron, and Multinomial Naïve Bayes to evaluate and determine the most effective and accurate algorithm in conducting sentiment analysis of product reviews on Tokopedia. The results of research using 2000 Tokopedia product review data show that Multinomial Naïve Bayes has the highest level of accuracy, reaching 84.00% and precision of 96.00%. Support Vector Machines has an accuracy rate of 80.00% and a precision value of 95.00%. Meanwhile, Perceptron provides 81.00% accuracy and 95.00% precision. Evaluation using the confusion matrix also indicates that Multinomial Naïve Bayes provides superior results with a truth level of 1011 for positive sentiment labels and 860 for negative sentiment labels. This research provides valuable insights regarding sentiment analysis of product reviews on Tokopedia, and the results can be a reference for further research exploring more innovative sentiment analysis methods or the application of technology to increase the efficiency of sentiment analysis in the context of E-commerce.

Keywords


Perceptron; Multinomial Naïve Bayes; Perceptron; Support Vector Machine; Tokopedia; Sentiment Analysis

Full Text:

PDF

References


R. Maulana et al., “KOMPARASI ALGORITMA NAIVE BAYES DAN K-NEAREST NEIGHBOR PADA ANALISIS SENTIMEN TERHADAP ULASAN PENGGUNA APLIKASI TOKOPEDIA,†Jurnal Teknologi Informasi, vol. 17, no. 2, pp. 177–189, 2023, doi: 10.47111/JTI.

A. Tazidan OctaN et al., “ALGORITMA DECISION TREE UNTUK ANALISIS SENTIMEN PUBLIC TERHADAP MARKETPLACE DI INDONESIA,†Jurnal Ilmiah Nasional Riset Aplikasi dan Teknik Informatika (NARATIF), vol. 05, 2023.

A. Safira, A. S. Masyarakat…ï®, and F. N. Hasan, “ANALISIS SENTIMEN MASYARAKAT TERHADAP PAYLATER MENGGUNAKAN METODE NAIVE BAYES CLASSIFIER,†Jurnal Sistem Informasi, vol. 5, no. 1, 2023.

Irvandi, B. Irawan, and O. Nurdiawan, “NAIVE BAYES DAN WORDCLOUD UNTUK ANALISIS SENTIMEN WISATA HALAL PULAU LOMBOK,†INFOTECH journal, vol. 9, no. 1, pp. 236–242, May 2023, doi: 10.31949/infotech.v9i1.5322.

N. Kahar and W. Aritonang, “IMPLEMENTASI JARINGAN SYARAF TIRUAN DENGAN ALGORITMA PERCEPTRON DALAM PENENTUAN PROGRAM STUDI MAHASISWA BARU,†JURNAL AKADEMIKA, pp. 74–80, 2022.

E. Suryati, A. Ari Aldino, N. Penulis Korespondensi, and E. Suryati Submitted, “Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM),†JURNAL TEKNOLOGI DAN SISTEM INFORMASI, vol. 4, no. 1, pp. 96–106, 2023, doi: 10.33365/jtsi.v4i1.2445.

A. Wibisono Informatika, “FILTERING SPAM EMAIL MENGGUNAKAN METODE NAIVE BAYES,†Teknologipintar.org, vol. 3, no. 4, pp. 1–22, 2023.

G. Ditami, E. Ripanti, and H. Sujaini, “Implementasi Support Vector Machineuntuk Analisis Sentimen Terhadap Pengaruh Program Promosi EventBelanja pada Marketplace,†JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 8, no. 3, pp. 508–516, 2022.

A. Fauzi and Ginabila, “Analisis Sentimen Terhadap Pemutar Musik Online Spotify Dengan Algoritma Naive Bayes dan Support Vector Machine,†Jurnal Ilmiah ILKOMINFO - Jurnal Ilmu Komputer dan Informatika, pp. 2621–4962, 2023.

N. Ajijah and A. Kurniawan, “Klasifikasi Teks Mining Terhadap Analisa Isu Kegiatan Tenaga Lapangan Menggunakan Algoritma K-Nearest Neighbor (KNN),†, vol. 7, no. 1, 2023.

F. Kristanto, W. W. Winarno, and A. Nasiri, “Perbandingan Algoritme Naïve Bayes dan Decision Tree Pada Analisis Sentimen Data Komentar Siswa Pada Aplikasi Digital Teacher Assessment,†Jurnal Ilmiah Teknik Informatika dan Sistem Informais, pp. 538–548, 2023.

M. Zaki Anbari, M. Zaki Anbari, and B. Sugiantoro, “JURNAL MEDIA INFORMATIKA BUDIDARMA Studi Komparasi Metode Analisis Sentimen Naïve Bayes, SVM, dan Logistic Regression Pada Piala Dunia 2022,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 2, pp. 688–695, 2023, doi: 10.30865/mib.v7i2.5383.

A. U. Nabiylah Ramadhanty and I. Najiyah, “IMPLEMENTASI WEB SCRAPING PADA SITUS JURNAL SINTA MENGGUNAKAN FRAMEWORKSELENIUM WEBDRIVER PYTHON,†JIKA (Jurnal Informatika), vol. 7, no. 1, pp. 29–36, 2023.

T. Maulana Fahrudin, P. Aji Riyantoko, K. Maulida Hindrayani, S. Data, F. Ilmu Komputer, and U. Pembangunan Nasional Veteran Jawa Timur, “Implementation of Web Scraping on Google Search Engine for Text Collection Into Structured 2D List,†Jurnal Informatika dan Teknologi Informasi, vol. 20, no. 2, pp. 139–152, 2023, doi: 10.31515/telematika.v20i2.9575.

M. L. Nugraha and E. B. Setiawan, “JURNAL MEDIA INFORMATIKA BUDIDARMA Bank Central Asia (BBCA) Stock Price Sentiment Analysis On Twitter Data Using Neural Convolutional Network (CNN) And Bidirectional Long Short-Term Memory (BI-LSTM),†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 3, 2023, doi: 10.30865/mib.v7i3.6120.

B. Bramantyo, M. Pajar, K. Putra, and N. Hendrastuty, “Implementasi Recurrent Neural Network Pada Multiclass Text Classification Judul Berita,†JURNAL MEDIA BORNEO, vol. 1, no. 1, 2023, doi: 10.58602/mediaborneo.v1i1.6.

N. Petty Wahyuningtyas, D. Eka Ratnawati, and N. Yudi Setiawan, “Root Cause Analysis (RCA) berbasis Sentimen menggunakan Metode K-Nearest Neighbor (K-NN) (Studi Kasus: Pengunjung Kolam Renang Brawijaya),†Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 5, pp. 2515–2520, 2023, [Online]. Available: http://j-ptiik.ub.ac.id

S. Saepudin, S. Widiastuti, and C. Irawan, “Sentiment Analysis of Social Media Platform Reviews Using the Naïve Bayes Classifier Algorithm,†Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 12, no. 2, pp. 236–243, Jul. 2023, doi: 10.32736/sisfokom.v12i2.1650.

R. Nurlaely, D. Sartika Simatupang, and I. Lucia Kharisma, “Analisis Sentimen Twitter Terhadap Cyberbullying Menggunakan Metode Support Vector Machine (SVM),†Jurnal Computer Science and Information Technology(CoSciTech), vol. 4, no. 2, pp. 376–384, 2023, doi: 10.37859/coscitech.v4i2.5161.

A. Sinaga and S. P. Nainggolan, “Analisis Perbandingan Akurasi dan Waktu Proses Algoritma Stemming Arifin-Setiono dan Nazief-Adriani pada Dokumen Teks Bahasa Indonesia,†Jurnal SEBATIK, vol. 27, no. 1, p. 27, 2023, doi: 10.46984/sebatik.v27i1.2072.

R. B. Dahlian and D. Sitanggang, “Sentiment Analysis of Digital Television Migration on Twitter Using Naïve Bayes Multinomial Comparison, Support Vector Machines, and Logistic Regression Algorithms,†Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 12, no. 2, pp. 280–288, Jul. 2023, doi: 10.32736/sisfokom.v12i2.1668.




DOI: https://doi.org/10.30865/mib.v7i4.6839

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.