Analisis Perbandingan Teorema Bayes dan Case Based Reasoning Dalam Diagnosis Penyakit Myasthenia Gravis

Bagas Triaji, Azanuddin Azanuddin, Ibnu Rusydi, Ita Mariami, Asyahri Hadi Nasyuha

Abstract


The medical industry faces several obstacles due to illness. Treatment of any condition, including myasthenia gravis, relies heavily on an accurate and precise diagnosis. Myasthenia gravis is an autoimmune disease that affects the neuromuscular junction and is characterized by sudden muscle weakness and fatigue due to the loss of acetylcholine receptors (AChRs) at the neuromuscular junction. Successful treatment planning and providing a good prognosis to the patient is highly dependent on accurate and rapid diagnosis. To diagnose Myasthenia Gravis, this study compares and contrasts Case Anthology with Bayes' Theorem. The neuromuscular condition called myasthenia gravis is characterized by a variable decrease in muscle strength. Correct and timely diagnosis is essential to start a successful course of therapy. Data from patients with Myasthenia Gravis symptoms and clinical indicators were collected for this study. To obtain an accurate diagnosis, the dataset was analyzed using Bayes' Theorem and Case Anthology techniques. Based on the current symptoms, Bayes' Theorem is used to estimate the probability of the condition, while Anthology of Cases is used to diagnose the patient. Based on symptoms, Bayes' Theorem predicts disease outcome probabilistically, but requires reliable initial assumptions and is susceptible to prior probabilities. On the other hand, Case Anthologies use information obtained from previous situations, but may be limited by the availability of relevant data and may experience difficulties in dealing with unique or unusual situations. This study helps us understand the benefits and limitations of each technique in diagnosing Myasthenia Gravis. A more accurate and effective diagnosis can be made by combining the two methods. These studies can serve as a foundation for creating more sophisticated diagnostic techniques integrated into clinical practice. The following is a summary of the percentages obtained using the Bayes Theorem and Case Anthology methods: For the diagnosis of Myasthenia Gravis, the Bayes Theorem technique produces a percentage value of 55% while the Case Anthology method only produces a percentage value of 26%. Therefore, the Bayes Theorem technique is better and more reliable in diagnosing Myasthenia Gravis.

Keywords


Expert System; Myasthenia Gravis; Teorema Bayes; Dempster Shafer

Full Text:

PDF

References


F. Dwimartyono, “Nyeri Neuropatik Pada Penderita Myastenia Gravis,†Green Med. J., vol. 1, no. 1, pp. 111–127, 2019.

F. Muhammad, Y. Syafrita, and L. Susanti, “Gambaran Kualitas Hidup Pasien Miastenia Gravis Di RSUP Dr. M. Djamil Padang,†J. Kesehat. Andalas, vol. 8, no. 1, pp. 43–49, 2019.

H. Rahim, H. Hisbullah, S. K. Arif, and F. Muchtar, “Covid-19 pada Pasien Myasthenia Gravis,†UMI Med. J., vol. 6, no. 2, pp. 65–76, 2021.

N. Sulardi and A. Witanti, “Sistem Pakar Untuk Diagnosis Penyakit Anemia Menggunakan Teorema Bayes,†J. Tek. Inform., vol. 1, no. 1, pp. 19–24, 2020.

I. Muzakkir and M. H. Botutihe, “Case Based Reasoning Method untuk Sistem Pakar Diagnosa Penyakit Sapi,†Ilk. J. Ilm, vol. 12, no. 1, pp. 25–31, 2020.

A. J. F. Purba, “Perbandingan Metode Bayes Dan Certenty Factor Pada Sistem Pakar Mendiagnosa Penyakit Varisela Pada Anak- Anak,†Heal. Contemp. Technol. J., vol. 1, no. 1, pp. 20–25, 2020, [Online]. Available: https://ejurnal.seminar-id.com/index.php/hytech/issue/view/13

R. Rachman, “Sistem Pakar Deteksi Penyakit Refraksi Mata Dengan Metode Teorema Bayes Berbasis Web,†J. Inform., vol. 7, no. 1, pp. 68–76, 2020, doi: 10.31311/ji.v7i1.7267.

P. S. Ramadhan and U. F. S. Sitorus Pane, “Analisis Perbandingan Metode (Certainty Factor, Dempster Shafer dan Teorema Bayes ) untuk Mendiagnosa Penyakit Inflamasi Dermatitis Imun pada Anak,†J. SAINTIKOM (Jurnal Sains Manaj. Inform. dan Komputer), vol. 17, no. 2, p. 151, 2018, doi: 10.53513/jis.v17i2.38.

H. A. Rahman, “Sistem Pakar dalam Mendeteksi Kerusakan Laptop dengan Metode Case Based Reasoning,†J. Sistim Inf. dan Teknol., vol. 2, pp. 71–76, 2020, doi: 10.37034/jsisfotek.v2i3.25.

R. Ginting, M. Zarlis, and R. Rosnelly, “Analisis Perbandingan Metode Certainty Factor dan Teorema Bayes untuk Mendiagnosa Penyakit Autis Pada Anak,†J. Media Inform. Budidarma, vol. 5, no. 2, p. 583, 2021, doi: 10.30865/mib.v5i2.2930.

B. H. Hayadi, Sistem pakar. Deepublish, 2018.

R. Hardianto and C. Kusuma, “Rancang Bangun Sistem Pakar Penentuan Kepribadian,†J. Sist. Komput. dan Inform., vol. 1, no. 1, pp. 45–51, 2019.

M. A. Pratama et al., “Expert System Mendiagnosa Kerusakan Pada Sepeda Motor Vespa Jenis Kongo 1965 Menggunakan Metode Dempster Shafer Pada Bengkel Scooter Bongkar Servizio,†J. Cyber Tech, vol. 1, no. 3, 2021.

A. Supiandi and D. B. Chandradimuka, “Sistem Pakar Diagnosa Depresi Mahasiswa Akhir Dengan Metode Certainty Factor Berbasis Mobile,†J. Inform., vol. 5, no. 1, pp. 102–111, 2018.

F. Aziizah, M. Sinta, and D. Kusumaningsih, “Tantangan Diagnosis Dan Terapi Myasthenia Gravis,†Univ. Muhammadiyah Surakarta, p. 803, 2021.

B. Husna, M. Marlina, and R. Amni, “ASUHAN KEPERAWATAN PADA MYASTHENIA GRAVIS DI INTENSIVE CARE UNIT: SUATU STUDI KASUS,†J. Ilm. Mhs. Fak. Keperawatan, vol. 1, no. 1, 2022.

I. Jusup, “Psikofarmaka Depresi pada Pasien Myasthenia Gravis,†J. Nutr. Heal., vol. 7, no. 3, 2019.

G. W. N. Wibowo, S. Widiastuti, M. Muratno, E. Lolang, and S. Soraya, “Penerapan Metode Teorema Bayes Dalam Mendiagnosa Penyakit Tubercolosis,†Build. Informatics, Technol. Sci., vol. 4, no. 4, pp. 1782–1788, 2023.

P. S. Ramadhan, “Sistem Pakar Pendeteksian Psoriasis Postular Menggunakan Kombinasi Teorema Bayes Dengan Euclidean Probability,†CESS (Journal Comput. Eng. Syst. Sci., vol. 4, no. 2, pp. 111–118, 2019.

D. Setiawan, R. N. Putri, and R. Suryanita, “Perbandingan Algoritma Genetika dan Backpropagation pada Aplikasi Prediksi Penyakit Autoimun,†Khazanah Inform. J. Ilmu Komput. Dan Inform., vol. 5, no. 1, pp. 21–27, 2019.

A. H. Nasyuha, Y. Syahra, M. I. Perangin-Angin, D. R. Habibie, and A. A. Subagyo, “Sistem Pakar Dalam Mendiagnosis Penyakit Leishmaniasis Menerapkan Metode Case-Based Reasoning (CBR),†J. MEDIA Inform. BUDIDARMA, vol. 7, no. 2, pp. 747–755, 2023.

Z. A. Faisal, “Sistem pakar diagnosa penyakit ayam petelur menggunakan metode case based reasoning berbasis web,†JATI (Jurnal Mhs. Tek. Inform., vol. 3, no. 2, pp. 126–132, 2019.

N. J. Telambanua, N. Nofriadi, and A. Dermawan, “Sistem Pakar Untuk Mendeteksi Penyakit Mata Menerapkan Metode Case Based Reasoning,†Build. Informatics, Technol. Sci., vol. 4, no. 2, pp. 570–580, 2022.




DOI: https://doi.org/10.30865/mib.v7i3.6436

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.