Analisis Pengaruh Data Augmentasi Pada Klasifikasi Bumbu Dapur Menggunakan Convolutional Neural Network
Abstract
Indonesia is a country that produces the best spices and herbs. The types of kitchen spices and spices are indeed very diverse and almost similar, so many people cannot distinguish between the types. So it is necessary to create a digital image processing model to sort out the types of spices and herbs. Due to the minimal data in making the classification model, the use of augmented data is used to make the data more diverse. This study aims to compare architecture by applying augmentation and not applying augmentation from photo data of kitchen spices. From the two models, it will be known which level of accuracy of each model is higher than the two models. This study uses the Convolutional Neural Networks method using a mapped architecture. Then use the confusion matrix method for the results after testing is carried out on data testing. The test was carried out with 80 testing data images consisting of own photo images and internet search images. The result of this research is obtained a model for the classification of kitchen spices. The test results show that CNNs that do not apply augmentation from the model only get an accuracy of 54%, while CNNs that apply augmentations from the model get an accuracy of 80%. The application of augmentation to the model gets higher accuracy because the process of using augmentation is to increase the amount of data by creating new data from existing data so as to make more image data. For internet search data and own photos, higher accuracy is data from internet searches. The model that has the highest accuracy is then implemented into a web-based application.
Keywords
Full Text:
PDFReferences
E. T. Erfah, “Manfaat Pengetahuan Bumbu dan Rempah Pada Pengolahan Makanan Indonesia Siswa Smkn 9 Bandung,†Media Pendidikan Gizi dan Kuliner, pp. 42-50, 2017.
N. Febian, “Klasifikasi Citra Buah Menggunakan Convolutional Neural Network,†Journal of Informatics and Computer Science, pp. 1-5, 2019.
H. T. Isna, “Klasifikasi Citra Digital Bumbu dan Rempah dengan Algoritma Convolutional Neural Network (CNN),†Jurnal Gaussian, vol. IX, no. 3, pp. 273-282, 2020.
K. H. Muhammad Resa, “Analisis Pengaruh Tingkat Akurasi Klasifikasi Citra Wayang dengan Algoritma Convolutional Neural Network,†Jurnal Teknologi Informasi, vol. IV, no. 2, pp. 182-187, 2020.
M. A. A. Tonton, “Klasifikasi Buah Zaitun Menggunakan Convolutional Neural Network,†Jurnak Sistem Komputer, vol. X, no. 2, pp. 119-126, 2021.
A. R. Aldho, “Implementasi Deep Learning Untuk Prediksi Tingkat Kematangan dan Bobot Buah Pepaya,†e-Proceeding of Engineering, vol. VIII, no. 6, pp. 11993-11998, 2021.
Y. A. Hendry, “Klasifikasi Batik Riau dengan Menggunakan Convolutional Neural Network (CNN),†Ilmu Komputer, vol. IX, no. 1, pp. 7-10, 2020.
M. N. Taufiqotul, “Convolutional Neural Network Untuk Metode Klasifikasi Multi Label Pada Motif Batik,†Techno COM, vol. XXI, no. 1, pp. 155-165, 2021.
A. Z. Budy, Machine Learning & Reasoning Fuzzy Logic Algoritma Manual Matlab & Rapid Miner, Yogyakarta: Deepublish, 2020.
R. R. Rerung, Algoritma dan Struktur Data untuk Perguruan Tinggi, Sumatera Barat: Insan Cendekia Mandiri, 2020.
M. Niki, Konsep Kecerdasan Buatan dengan Pemahaman Logika Fuzzy dan Penerapan Aplikasi, Tangerang Selatan: Uwais Inspirasi Indonesia, 2019.
T. Wahyono, Buku Fundamental Of Python For Machine Learning, Yogyakarta: Gava Media, 2018.
P. D. Kusuma, Machine Learning Teori Program dan Studi Kasus, Yogyakarta: Deepublish, 2020.
A. Josh, Deep Learning A Practitioner's Approach, O'Reilly, 2017.
A. R. Wayan, “Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101,†Teknik ITS, vol. V, no. 1, pp. A65-A69, 2016.
A. Sarirotull, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,†Justindo, vol. III, no. 2, pp. 49-56, 2018.
M. N. A. D. N. L. D. E. M. R. S. C. Anjar, Data Mining ALgoritma dan Implementasi, Yayasan Kita Menulis, 2020.
D. A. M. Z. Nana, “Optimasi Klasifikasi Buah Anggur Menggunakan Data Augmentasi dan Convolutional Neural Network,†Smart Comp, vol. XI, no. 2, pp. 148-161, 2022.
DOI: https://doi.org/10.30865/mib.v6i4.4201
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 JURNAL MEDIA INFORMATIKA BUDIDARMA

This work is licensed under a Creative Commons Attribution 4.0 International License.
JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.